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Learning a Binary Classifier

An unknown probability distribution D on a domain U
An unknown correct classification — a partition ¢ of I/ to In
and Out sets
Input:
® Concept class C — a collection of possible classification rules
(partitions of U).
® A training set {(x;,c(x;)) | i=1,...,m}, where xi,...,x,, are
sampled from D.
Goal: With probability 1 — § the algorithm generates a good
classifier.
A classifier is good if the probability that it errs on an item
generated from D is < opt(C) + ¢, where opt(C) is the error
probability of the best classifier in C.
Realizable case: ¢ € C, Opt(C) = 0.

Unrealizable case: ¢ ¢ C, Opt(C) > 0.
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Probably Approximately Correct Learning
(PAC Learning)

The goal is to learn a concept (hypothesis) from a pre-defined
concept class. (An interval, a rectangle, a k-CNF boolean
formula, etc.)

There is an unknown distribution D on input instances.

Correctness of the algorithm is measured with respect to the
distribution D.

The goal: a polynomial time (and number of samples)
algorithm that with probability 1 — § computes an hypothesis
of the target concept that is correct (on each instance) with
probability 1 — e.
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Formal Definition

® We have a unit cost function Oracle(c, D) that produces a
pair (x, c(x)), where x is distributed according to D, and ¢(x)
is the value of the concept ¢ at x. Successive calls are
independent.

® A concept class C over input set X is PAC learnable if there is
an algorithm L with the following properties: For every

concept ¢ € C, every distribution D on X, and every
0<ed<1)/2,

® Given a function Oracle(c, D), € and §, with probability 1 — §
the algorithm output an hypothesis h € C such that

Prp(h(x) # ¢(x)) < e.
® The concept class C is efficiently PAC learnable if the algorithm
runs in time polynomial in the size of the problem,1/e and 1/¢.

So far we showed that the concept class "intervals on the line" is
efficiently PAC learnable.
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The fundamental learning questions:

® What concept classes are PAC-learnable? How large training
set is needed?

® What concept class are efficiently learnable (in polynomial
time)?
A complete (and beautiful) characterization for the first question,
not very satisfying answer for the second one.

Some Examples:
o Efficiently PAC learnable: Interval in R, rectangular in R2,
disjunction of up to n variables, 3-CNF formula,...
® PAC learnable, but not in polynomial time (unless P = NP):
DNF formula, finite automata, ...

e Not PAC learnable: Convex body in R?,
{sin(hx) |0 < h<m7},...
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The Weakness of Union Bound

Theorem

In the realizable case, any concept class C can be learned with
m=1(In|C| +In }) samples.

Learning an Interval:
® The true classification rule is defined by a sub-interval
[a, b] C [A, B]. The concept class C is the collection of all
intervals, C = {[c.d| | [¢,d] C [A, B]}

Theorem

There is a learning algorithm that given a sample from D of size
m= % In % with probability 1 — 6, returns a classification rule
(interval) [x, y| that is correct with probability 1 — ¢.

This sample size bound is independent of the size of the concept
class |C|, which is infinite.
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Uniform Convergence for Learning Binary
Classifcation

Given a concept class C, and a training set sampled from D,

{(X,',C(X,’)) ‘ i=1,.. *m}
For any h € C, let A(c, h) be the set of items on which the
two classifiers differ: A(c, h) = {x € U | h(x) # c(x)}

For the realizable case we need a training set (sample) that
with probability 1 — ¢§ intersects every set in

{A(c,h) | Pr(A(c,h)) > €} (enet)

For the unrealizable case we need a training set that with
probability 1 — ¢ estimates, within additive error ¢, every set in

A(c,h) ={x e U] h(x) # c(x)} (e-sample).
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Uniform Convergence Sets

Given a collection R of sets in a universe X, under what conditions
a finite sample V from an arbitrary distribution D over X, satisfies
with probability 1 — ¢,
(1)
Vr € R, I%r(r) >e= rON#0  (enet)

® for any r € R,

NN

PDr(r) W

<e (e-sample)

® Under what conditions on R can a finite sample achieve these
requirements?

® What sample size is needed?
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Vapnik—Chervonenkis (VC) Dimension 1968,/1971

(X, R) is called a "range space":
e X = finite or infinite set (the set of objects to learn)

® R is a family of subsets of X, R C 2%,
® In learning, R = {A(c, h) | h € C}, where C is the concept
class, and c is the correct classification.

® For a finite set S C X, s = |S|, define the projection of R on
S,
Nr(S)={rnS|reR}

e If [Mz(S)| = 2° we say that R shatters S.
® The VC-dimension of (X, R) is the maximum size of S that is
shattered by R. If there is no maximum, the VC-dimension is

Theorem

|8

A range space has a finite e-net (e-sample) iff its VVC-dimension is
finite.
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The VC-Dimension of a Collection of
Intervals

C = collections of intervals in [A,B] — can shatter 2 point
but not 3. No interval includes only the two red points

. . 4.

The VC-dimension of Cis 2
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Collection of Half Spaces in the Plane

C — all half space partitions in the plane. Any 3
points can be shattered:

* Cannot partition the red from the blue points

* The VC-dimension of half spaces on the plane is 3

* The VC-dimension of half spaces in d-dimension
space is d+1
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Axis-parallel rectangles on the plane

4 points that define a convex hull can be shattered.

No five points can be shattered since one of the points @

must be in the convex hull of the other four. @
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Convex Bodies in the Plane

* C—all convex bodies on the plane

Any subset of the point can be included in a convex body.
The VC-dimension of Cis oo
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A Few Examples

C = set of intervals on the line. Any two points can be
shattered, no three points can be shattered.

C = set of linear half spaces in the plane. Any three points
can be shattered but no set of 4 points. If the 4 points define
a convex hull let one diagonal be 0 and the other diagonal be
1. If one point is in the convex hull of the other three, let the
interior point be 1 and the remaining 3 points be 0.

C = set of axis-parallel rectangles on the plane. 4 points that
define a convex hull can be shattered. No five points can be
shattered since one of the points must be in the convex hull of
the other four.

C = all convex sets in R?. Let S be a set of n points on a
boundary of a cycle. Any subset Y C S defines a convex set
that doesn’t include S\ Y.
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The Main Result

Theorem (A. Blumer, A. Ehrenfeucht, D. Haussler, and M.K.

Warmuth - 1989)

Let C be a concept class with VC-dimension d then
® C is PAC learnable in the realizable case with

d d 1 1

— —n— —In— -net
m O(€|n€+€|n5) (e-net)
samples.
® C is PAC learnable in the unrealizable case with
d d 1 1
m = O(? In ; + ? In 5) (€—Samp/e)
samples.

The sample size is not a function of the number of concepts, or
the size of the domain!
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Sauer's Lemma
For a finite set S C X, s = |S]|, define the projection of R on S,

Nr(S)={rnS|reR}

Theorem

Let (X, R) be a range space with VC-dimension d, for any S C X,

such that |S| = n,
d
n
)< (7).
i=0

For n=d, [Ng(S)| <29, and for n > d > 2, [Ng(S)| < n9.

The projection of R on n > d elements grows polynomially in the
VC-dimension and does not depend on |R|.
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Proof

By induction on d, and for a fixed d, by induction on n.
True for d = 0 or n = 0, since Nz(S) = {0}.

Assume that the claim holds for d’ < d — 1 and any n, and for
dandall |S'] < n—1.

Fix x € S and let " = S — {x}.

Mr(S) = {rnS|reRr}
Meg(S) = {rnS |reRr}
Nex(S) = {rnS"|reRandx¢rand ru{x}ecR}

FormnS#mnnSwehaven NS =rnnSiff n =rnU{x},
or rn =r U{x}. Thus,

NR(S)] = [Mr(S)] + Mg (S)]
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Fix x € Sand let S’ =S — {x}.

Nr(S)] = {rnS|reR}
Mg(S) = {rnS | reR}
Ner(S) = {rnS' |reRandx¢rand ru{x}eR}

® The VC-dimension of (S,[1g(S)) is no more than the
VC-dimension of (X, R), which is d.

® The VC-dimension of the range space (S',z(S’)) is no more
than the VC-dimension of (S, Mz(S)) and |S'| = n— 1, thus
by the induction hypothesis

n<5(7)
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Fix x € Sand let S’ = S — {x}.

Mr(S)I = [{rnS|reR}
Ne(S) = H{rnS" | reRry
Mg (S) = {rnS | reRandx¢&rand ru{x}e R}

® For each r € Mg(,)(S') the range set Ms(R) has two sets: r
and r U {x}. If B is shattered by (S, g(,)(S')) then B U {x}
is shattered by (X, R), thus (S', Mg (S’)) has VC-dimension
bounded by d — 1, and

=
IMre (S| < ).
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NR(S)] = [Mr(S)] + [Mre) (S|

Mr(S)]
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[We use (',':11) + (”71) = %(ﬁ + %) = (7)]

The number of distinct concepts on n elements grows polynomially
in the VC-dimension!
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e-net

Let (X, R) be a range space, with a probability distribution D on
X. Aset N C X is an e-net for X with respect to D if

Vr € R, Fl’)r(r)Ze:> r0 N 0.

Theorem

Let (X, R) be a range space with VC-dimension bounded by d.
With probability 1 — §, a random sample of size

8d 16d 4 6 4
m>—In— + —In—=
€ € e 0

is an e-net for (X, R).
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When is a Random Sample an e-net?

Let (X, R) be a range space with VC-dimension d. Let M be
m independent samples from X.

Let £y ={3re R | Pr(r) > e and [rnN M| =0}. We want to
show that Pr(E;) < 0.

Choose a second sample T of m independent samples.

® Let
Eo={3re R|Pr(r)>eand |[rNnM|=0and [rNT| > em/2}

PF(E2) S Pr(El) S 2Pr(E2)
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Lemma

PF(EQ) S Pr(El) § 2Pr(E2)

Ei ={3re R | Pr(r)>e¢and |[rn M| =0}
Ec={3reR|Pr(r)>eand [rnM|=0and [rNT|>em/2}

PUE) — pr(Ey | E1) > Pr(IT N r| > em/2) > 1/2

[The probability that 3r € R.... is at least the probability for a
given r € R.]

Since | T N r| has a Binomial distribution B(m,¢),
Pr(|T Nr| < em/2) < e M8 <1/2 for m > 8/e.
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Ex={3reR|Pr(r)>eand [rnM|=0and [rNT|>em/2}
Ei={3reR||rnM|=0and |[rNT|>em/2}

Lemma

Pr(E;) < 2Pr(E;) < 2Pr(Eb) < 2(2m)927<m/2,

For a fixed r € R and k = em/2, let
E, ={|rMM| =0and |rNT| > k} = {|MNr| =0and |rN(MUT)| > k}
E,={l[rnM|=0and |[rNT|> k}

Eé - UreREr.
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El={3reR||r0M|=0and [rNT|>em/2}

For a fixed r € R and k = em/2 let
E,={l[rnM|=0and |[rNT|> k}

Eé - UrGREr-

Choose an arbitrary set Z of size 2m and divide it randomly to M
and T.

Pr(E,) = Pr(jMnr|=0 \ [ro(MUT)| > k)Pr(lr0n(MUT)| > k)
"

()

< PrMOr =0 |rn(MUT) > k) <

_ m(m—1)..(m—k+1) < p—em)2

2m(2m —1)...2m—k+1)
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The Main Idea: Switching Sample Space

We start with events defined on the distributions of samples from D that can

intersect any set r € R.

Ei={3re R | Pr(r) >e€and |[rN M| =0}

Ex={3reR|Pr(r)>eand [rnM|=0and [rNT|>em/2}

E;={3reR||rnM|=0and |rNT|>em/2}

E,={lrnM|=0and [r0NT|>k}={|MNrl|=0and [rN(MUT)| > k}

E; = UrerE;

Choosing a sample of 2n elements, Z = M U T, and partition it randomly
Pr(E,) Pr((Mnrl=0 | [rOo(MUT)| > k)Pr(lrn(MUT)| > k)

Pr(|M N r| :O| [rO(MUT)| > k)

IN

(IMNrl=0]|rn(MUT)| > k) is an event in the distribution of all
partitions of Z to M and T. Therefore,

Pr(Es) <3 cnpz Pr(iMnr| =0 | [rn(MUT)| > k)

We only need to consider sets in the projection of R on Z.
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Since |Mz(Z)| < (2m)?,

Pr(E}) < (2m)927cm/?,

Pr(E;) < 2Pr(E}) < 2(2m)927m/2.

Let (X, R) be a range space with VC-dimension bounded by d.
With probability 1 — 9, a random sample of size

8d 16d 4 4
m>—In— + —In—
€ € € 0

is an e-net for (X, R).
We need to show that (2m)927m/2 < §. for m > 89 |n 169 4 4 |p 1,
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Arithmetic

We show that (2m)92<™/2 < 5. for m > 84 |n 164 4 4 n 1,
Equivalently, we require

em/2 > 1In(1/6) + dIn(2m).

Clearly em/4 > In(1/6), since m > %n 1.

We need to show that em/4 > dIn(2m).
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Lemma

Ify > xInx > e, then ;=X

Proof

For y = xInx we have Iny = Inx 4+ Inlnx < 2Inx. Thus

2y - 2x In x

W_ 2In x

Differentiating f(y) = "2’—y we find that f(y) is monotonically

decreasing when y > xInx > e, and hence ﬁyy is monotonically

increasing on the same interval, proving the lemma. Ol
Let y=2m > 16d In 169 and x = 16d , we have
4m 16d
> R
In(2m) = ¢
) em
" > dIn(2m)

as required. 29/61



Lower Bound on Sample Size

Theorem

A random sample of a range space with VC dimension d that with
probability at least 1 — ¢ is an e-net must have size Q(<).

Consider a range space (X, R), with X = {x1,...,x4}, and
R =2%.

Define a probability distribution D:

Pr(x1) = 1—4e

Pr(Xz) = Pr(X3) == Pr(xd) =

Let X' = {x2,... 7Xd}.
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Let X' = {XQ, c 7Xd}.
Pr(x2) = Pr(x3) = --- = Pr(xq de

d—1

~—

Let S be a sample of m = (C{gel) examples from the distribution D.

Let B be the event |SN X'| < (d —1)/2, then Pr(B) > 1/2.
With probability > 1/2, the sample does not hit a set of probability

d—1 4e

— 2
2 d—-1 €

Corollary

A range space has a finite e-net iff its VVC-dimension is finite.
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Back to Learning

Let X be a set of items, D a distribution on X, and C a set of
concepts on X.

Ac,c')={c\dUuc\c|c eC}

We take m samples and choose a concept ¢/, while the correct
concept is c.

If Prp({x € X | /(x) # c(x)}) > € then, Pr(A(c,c')) >,
and no sample was chosen in A(c, c’)

How many samples are needed so that with probability 1 — §
all sets A(c,c’), ¢’ € C, with Pr(A(c,c’)) > ¢, are hit by the
sample?
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The VC-dimension of (X,{A(c,c’) | ¢’ € C}) is the same as
(X,C).

Proof.

We show that

{NnS|celCt—={((c'\c)u(c\c))NS | €C} is a bijection.
Assume that c; NS # NS, then w.ol.g. x € (c;\ )N S.
xgciffxe((ca\c)U(c\ca))NS and
xZ((2\c)U(c\x))NS.

xeciffxg ((a\c)U(c\a))nSand x € ((c2\c)U(c\x))NS
Thus, c; NS # N S iff

((aa\c)U(c\c1))NS#((c2\c)U(c\ ))NS. The projection
on S in both range spaces has equal size. []
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PAC Learning

Theorem
In the realizable case, a concept class C is PAC-learnable iff the
VC-dimension of the range space defined by C is finite.

Theorem
Let C be a concept class that defines a range space with VC
dimension d. For any 0 < 0,¢ < 1/2, there is an

such that C is PAC learnable with m samples.

34/61



Unrealizable (Agnostic) Learning

We are given a training set {(x1, c(x1)), ..., (xm, c(xm))}, and
a concept class C

No hypothesis in the concept class C is consistent with all the
training set (¢ ¢ C).

Relaxed goal: Let ¢ be the correct concept. Find ¢’ € C such
that

Pr(c'(x) # ¢(x)) < jnf Pr(h(x) # c(x)) + .

An ¢/2-sample of the range space (X, A(c, c¢’)) gives enough
information to identify an hypothesis that is within e of the
best hypothesis in the concept class.
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When does the sample identify the correct rule?
The unrealizable (agnostic) case

The unrealizable case - ¢ may not be in C.

For any h € C, let A(c, h) be the set of items on which the
two classifiers differ: A(c, h) = {x € U | h(x) # c(x)}

For the training set {(x;, c(x;)) | i =1,....m}, let

- 1
Pr(A(e. h) = — Z L))

Algorithm: choose h* = arg minjce Pr(A(c, h)).
If for every set A(c, h),

|Pr(A(c, b)) — Pr(A(c, h)| <e,

then
Pr(A(c, h*)) < opt(C) + 2e.

where opt(C) is the error probability of the best classifier in C.
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If for every set A(c, h),
|Pr(A(c, h)) — Pr(A(c, h))| <,
then

Pr(A(c, h*)) < opt(C) + 2.

where opt(C) is the error probability of the best classifier in C.
Let h be the best classifier in C. Since the algorithm chose h*,

I5r(A(c h*)) < Pr (A(c, h)).
Thus,

Pr(A(c, h*)) — opt(C) + €
Pr(A(c, h)) — opt(C) + € < 2¢

Pr(A(c, h*)) — opt(C)

IN A
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e-sample

Definition

An e-sample for a range space (X, R), with respect to a probability
distribution D defined on X, is a subset N C X such that, for any
r e R,

[N N
Dr(r) W]

Theorem

Let (X, R) be a range space with VVC dimension d and let D be a
probability distribution on X. For any 0 < ¢, < 1/2, there is an

d d 1 1
m0<62|n6+62|n5>

such that a random sample from D of size greater than or equal to
m is an e-sample for X with with probability at least 1 — ¢.
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An e-sample for a finite R

Definition
An e-sample for a range space (X, R), with respect to a probability distribution D defined on X, is a subset
N C X such that, for any r € R,

NN |
Pr(r) —
D [N

<e

Theorem (Hoeffding's Inequality)

Let Xy, ..., X, be independent random variables such that for all 1 < i < n, E[X;] = p and
Pr(a < X; < b) = 1. Then

1< 2 2
Pr(l= 3 Xi = ul 2 @) < 2e7 207/ (07
i=1

Sample m elements with distribution D. For a given r € R, let X/ =1 if
the i-th sample is in r, otherwise X/ = 0. Pr(X/ =1) = Prp(r).

1 m
> ) = Pr(IL X - Py 2 ) < 2072

i=1

We need |R[2e 2™ < §, which requires m > 18l I"(sz)

2¢2
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Proof of the s-sample Bound:

Let NV be a set of m independent samples from X according to D.

Let
> 5} |
Choose another set T of m independent samples from X according
to D. Let
< 8/2}

PF(EQ) S Pr(El) S 2PF(E2)

— Pr(r)

N
E, = {are R st. "m‘
m

We want to show that Pr(E;) < 6.

Nrl

| TN
m

E; = {Er € Rs.t. —Pr(r)] >e A |Pr(r)—

|
-
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Pr(Ez) < Pr(Ey) < 2Pr(Ep).

El{ﬂreRs.t. "Nm—Pr(r)‘ >€}
m
N T
E, = {E!re R s.t. ’ nrl —Pr(r)' >e A ‘| nrl_ Pr(r)‘ §5/2}
m m

For m > 24,

3
PI’(EQ) Pr(Elﬁ E2) \Tﬂr\

= = Pr(Ex|E1) > Pr(|—— =P <g/2
Pr(E]_) Pr(E]_) r( 2| 1) — r(| m r(r)‘ — 6/ )

> 1-2e M2 >1/2

[In bounding Pr(Ex|E;) we use the fact that the probability that
Jr € R is not smaller than the probability that the event holds for
a fixed r] a1/61



Instead of bounding the probability of

VA
m

E;, = {Er € Rs.t. Pr(r)| >¢ A Pr(r)

| TN
m

we bound the probability of
E,={3reR||[rAN|—|rnT]| > gm}.

By the triangle inequality (|A| + |B| > |A + BJ):

lfrON|—|rO Tl +]||r0NT|— ml%r(r)\ > |l[r0N|— m%r(r)].
or

|IrON|—|rO Tl > HrﬂN\—mE;r(r)\—Hrﬂ T|—mFl’)r(r)\ >

N o

Since N and T are random samples, we can first choose a random
sample Z of 2m elements, and partition it randomly into two sets
of size m each. The event EJ is in the probability space of random
partitions of Z.

m.

<</2}
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PI’(El) <2 Pr(E2) <2 Pr(Eé) < 2(2m)d6752m/8.

® Since N and T are random samples, we can first choose a
random sample of 2m elements Z = z, ..., zo;, and then
partition it randomly into two sets of size m each.

® Since Z is a random sample, any partition that is independent
of the actual values of the elements generates two random
samples.

® We will use the following partition: for each pair of sampled
items zp;_1 and zp;, i = 1,..., m, with probability 1/2

(independent of other choices) we place z;—1 in T and z; in
N, otherwise we place zp; 1 in N and z; in T.
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For r € R, let E, be the event

Er:{HrﬂN]—]rm Tl > gm}

We have Ej = {3re R | [[rnN|—|rn T|| > sm} = | E..
rer

® If zp; 1,20; € r or zoj_1,20; ¢ r they don’t contribute to the
value of [[r N N| —|r0 T|.

® |f just one of the pair zo;_1 and z; is in r then their
contribution is +1 or —1 with equal probabilities.

® There are no more than m pairs that contribute +1 or —1
with equal probabilities. Applying the Chernoff bound we have

PI’(E,) < e—(em/2)2/2m < e—ezm/S.

® Since the projection of X on T U N has no more than (2m)¢
distinct sets we have the bound.
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To complete the proof we show that for

>32d| 64d+16| 1
m>"In—+ —=1In=
= €2 )

we have
(2m)de=<m/8 < 5.

Equivalently, we require

€m/8 > In(1/6) + dIn(2m).

Clearly ¢2m/16 > In(1/5), since m > i—? In %

To show that €2m/16 > dIn(2m) we use:
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Lemma

Ify > xInx > e, thenli—yyzx.

Proof

For y = xInx we have Iny = Inx 4+ Inlnx < 2Inx. Thus

2 2x In

%y o 2l

Iny = 2Inx
Differentiating f(y) = '2—;’ we find that f(y) is monotonically
decreasing when y > xInx > e, and hence l% is monotonically
increasing on the same interval, proving the lemma. Ol

Lety—2m>64dln642d andx—w we have —#7 26:‘—2‘1,50

In(2m)
% > dIn(2m) as required.

46 /61



Application: Unrealizable (Agnostic) Learning

We are given a training set {(x1, c(x1)), ..., (xm, c(xm))}, and
a concept class C

No hypothesis in the concept class C is consistent with all the
training set (¢ ¢ C).

Relaxed goal: Let ¢ be the correct concept. Find ¢’ € C such
that

Pr(c'(x) # ¢(x)) < jnf Pr(h(x) # c(x)) + .

An ¢/2-sample of the range space (X, A(c, c¢’)) gives enough
information to identify an hypothesis that is within e of the
best hypothesis in the concept class.
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e-sample

Definition

An e-sample for a range space (X, R), with respect to a probability
distribution D defined on X, is a subset N C X such that, for any
r e R,

[N N
Dr(r) W]

Theorem

Let (X, R) be a range space with VVC dimension d and let D be a
probability distribution on X. For any 0 < ¢, < 1/2, there is an

d d 1 1
m0<62|n6+62|n5>

such that a random sample from D of size greater than or equal to
m is an e-sample for X with with probability at least 1 — ¢.
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Uniform Convergence [Vapnik — Chervonenkis 1971]

Definition
A set of functions F has the uniform convergence property with
respect to a domain Z if there is a function mz(e,d) such that
e for any €,6 > 0, m(e,d) < oo
® for any distribution D on Z, and a sample z, ..., z,, of size
m = mg(e, 9),

m

1
Pr(sup |— f(z)— Ep[f]| <e)>1-06.
(s 3 (e = Eolf] < 0

Let fe(z) = 1,cf then E[fe(z)] = Pr(E).
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Application: Frequent Itemsets Mining (FIM)?

Frequent Itemsets Mining: classic data mining problem with many

applications
Settings:
Each line is a transaction, made of items from an
Dataset D alphabet 7
) An itemset is a subset of Z. E.g., the itemset

bread, milk )
bread {bread,milk}
milk, eggs The frequency fp(A) of AC Z in D is the fraction of

transactions
of D that A is a subset of. E.g.,
fp({bread,milk}) = 3/5 = 0.6

bread, milk, apple
bread, milk, eggs

Problem: Frequent Itemsets Mining (FIM)

Given ¢ € [0,1] find (i.e., mine) all itemsets A C 7 with
fp(A) > 6

l.e., compute the set FI(D,0) = {ACZ : fp(A) > 0}
There exist exact algorithms for FI mining (Apriori, FP-Growth,

)
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How to make FI mining faster?

Exact algorithms for FI mining do not scale with |D| (no. of
transactions):

They scan D multiple times: painfully slow when accessing disk
or network

How to get faster? We could develop faster exact algorithms
(difficult) or. ..
. only mine random samples of D that fit in main memory

Trading off accuracy for speed: we get an approximation of
FI(D, 0) but we get it fast

Approximation is OK: FI mining is an exploratory task (the
choice of 0 is also often quite arbitrary)

Key question: How much to sample to get an approximation of
given quality?
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How to define an approximation of the Fls?

For e, € (0,1), a (e, d)-approximation to FI(D,#) is a collection C
of itemsets s.t., with prob. > 1 — §:

Frequency —d_l

Ip(A) A mustnot beinC A mustbein C

“Close” False Positives are allowed, but no False Negatives
This is the price to pay to get faster results: we lose accuracy

Still, C can act as set of candidate Fls to prune with fast scan of D
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What do we really need?

We need a procedure that, given ¢, §, and D, tells us how large
should a sample S of D be so that

Pr(3 itemset A : |fs(A) — fp(A)| > ¢/2) < ¢

Theorem: When the above inequality holds, then FI(S,0 —£/2) is
an (e, ¢)-approximation

Proof (by picture):

Frequency
p(4) Must not be in C May befinC Must bein C
fs(A) >|-
0—¢e/2
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What can we get with a Union Bound?

For any itemset A, the number of transactions that include A is
distributed
|S|fs(A) ~ Binomial(|S|, fp(A))

Applying Chernoff bound
Pr(|fs(A) — fp(A)| > ¢/2) < 0o~ |Sle?/12

We then apply the union bound over all the itemsets to obtain
uniform convergence
There are 2171 itemsets, a priori. We need

2e—\3|52/12 < 5/2\I|

Thus 1 .
|S| > = <|Z|—|—|n2—|—|n5>
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Assume that we have a bound / on the maximum transaction size.
There are >, (‘%‘) < |Z|" possible itemsets. We need

26—\8\52/12 < (3/‘I|[

Thus,

12 1
|S| > 2 (élog]I +1In2+1In 5)

The sample size depends on log |Z| which can still be very large.
E.g., all the products sold by Amazon, all the pages on the Web,

Can have a smaller sample size that depends on some
characteristic quantity of D
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How do we get a smaller sample size?

[R. and U. 2014, 2015]: Let's use VC-dimension!
We define the task as an expectation estimation task:
® The domain is the dataset D (set of transactions)
® The family is 7 = {74, A C 27}, where
Ta={r €D : AC 7} is the set of the transactions of D
that contain A

® The distribution 7 is uniform over D: m(7) = 1/|D|, for each
Te€D

We sample transactions according to the uniform distribution,
hence we have:

Eclir] = 3 17 (0)n(r) = 35 (r) o = fo(A)

T7€D T7€D

We then only need an efficient-to-compute upper bound to the
VC-dimension
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Bounding the VC-dimesion

Theorem: The VC-dimension is less or the maximum transaction
size /.

Proof:

Let t > / and assume it is possible to shatter aset T C D
with | T| = t.

Then any 7 € T appears in at least 257! ranges 7, (there are
211 subsets of T containing 7)

Any 7 only appears in the ranges 7 such that A C 7. So it
appears in 2/ — 1 ranges

But 2 — 1 < 2t7! so 7% can not appear in 27! ranges

Then T can not be shattered. We reach a contradiction and
the thesis is true

By the VC c-sample theorem we need |S| > O(% (¢log/ +1In$))
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Better bound for the VC-dimension

Enters the d-index of a dataset D!

The d-index d of a dataset D is the maximum integer such that D
contains at least d different transactions of length at least d

Example: The following dataset has d-index 3

bread beer milk  coffee
chips coke  pasta

bread coke  chips

milk  coffee

pasta milk

It is similar but not equal to the h-index for published authors
It can be computed easily with a single scan of the dataset
Theorem: The VC-dimension is less or equal to the d-index d of D
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How do we prove the bound?

Theorem: The VC-dimension is less or equal to the d-index d of D
Proof:

Let / > d and assume it is possible to shatter aset T C D
with [ T| = /.

Then any 7 € T appears in at least 2! ranges T (there are
2/=1 subsets of T containing 7)

But any 7 only appears in the ranges 7, such that A C 7. So
it appears in 2/7l — 1 ranges

From the definition of d, T must contain a transaction 7" of
length |77 < ¢

This implies 2I7"1 —1 < 271 so0 7* can not appear in 2~1
ranges

Then T can not be shattered. We reach a contradiction and
the thesis is true

This theorem allows us to use the VC e-sample theorem
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What is the algorithm then?

d < d-index of D

r< % (d+in%)

sample size

S« 10

fori< 1,...,rdo
7; < random transaction from D, chosen uniformly
S+ Su {T,'}

end

Compute FI(S, 0 — £/2) using exact algorithm // Faster

algos make our approach faster!
Output FI(S,0 —¢/2)

Theorem: The output of the algorithm is a (&, §)-approximation
We just proved it!
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How does it perform in practice?

Very well!

Great speedup w.r.t. an exact algorithm mining the whole dataset
Gets better as D grows, because the sample size does not

depend on |D|

Sample is small: 10° transactions for ¢ = 0.01, § = 0.1

The output always had the desired properties, not just with prob.

1-96

Maximum error |fs(A) — fp(A)| much smaller than &

4.5F+06
—e&—sample —@—Large -
4.0E+06 ‘ ]
3.5E+06
— 3.0E+06
£
= 2.5E+06
‘£ 2.0E+06
2 ) ses06
1.0E+06
5.0F+05 /
0.0E+00
0.085 0.065 0.045 0.025 0.005
Minimum Frequency Threshold (0)
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